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Various levels of approximation (Hartree-Fock, configuration interaction and double-configura-
tion Hartree-Fock method) are compared for extensive and limited exponent optimization of the
atomic orbitals of the wavefunctions. The potential energy curves for the lowest-lying 'I1,, *IT,, 'IT,,
*I1, states of the hydrogen molecule are presented. The shapes of the curves on the highest level of
approximation, i.e. with the optimal double-configuration wavefunction, are basically in agreement
with previous, more sophisticated and time-consuming work. The influence of the various approxi-
mations is also studied for several one-electron properties: charge distribution of the wavefunction
along and perpendicular to the molecular axis, quadrupole moment and core attraction energy distri-
bution. Differences arise to the work of Zemke et al. [1], who used a limited exponent optimization
with a larger basis set, in the I, states where the 7 orbitals are very diffuse. The differences concern
magnitude and location of minima and maxima of potential curves, as well as considerable changes
in one-electron properties which depend strongly on the spatial distribution of the orbitals.

Verschiedene Approximationsstufen (Hartree-Fock, Konfigurationenwechselwirkung und Doppel-
konfigurationen-Hartree-Fock-Methode) werden fiir ausgedehnte und begrenzte Exponentenoptimi-
sierung von Atomorbitalen der Wellenfunktionen verglichen. Die Potentialkurven fiir die niedrigsten
‘im0, 1Hg, 3Hg Zustdnde des Wasserstoffmolekiils werden angegeben. Die Form der Kurven im
Rahmen der besten Niherung, d. h. mit Doppelkonfiguration, stimmen im wesentlichen mit friiheren
aufwendigeren Rechnungen iiberein. Der EinfluB der verschiedenen Approximationen wird auch an
einigen Einelektroneneigenschaften studiert: Ladungsverteilung der Wellenfunktion liings und senk-
recht zur Molekiilachse, Quadrupolmoment und Verteilung der Rumpfenergie. Unterschiede er-
scheinen zur Arbeit von Zemke et al. [1], die einen groBeren Basissatz mit begrenzter Optimisierung
verwandten, bei den II, Zustinden, wo die n-Orbitale sehr diffus sind. Die Unterschiede betreffen
GroBe und Lage der Minima und Maxima der Potentialkurven sowie betriichtliche Anderungen in
solchen Einelektroneneigenschaften, die stark von der rdumlichen Verteilung der Orbitale abhingen.

Comparaison de différents niveaux d’approximation (Hartree-Fock, interaction de configuration
et Hartree-Fock 4 deux configurations) pour des optimisations étendues et limitées des orbitales
atomiques de base. Calcul des courbes d’énergie potentielle pour les plus bas états *IL,, 311, *I1,, I,
de la molécule d’hydrogéne. Pour la fonction d’onde la plus raffinée: H.F. 4 deux configurations, Ia
forme des courbes est en accord avec les résultats obtenus dans des travaux précédents plus complexes
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et plus cofliteux. On étudie aussi Pinfluence des diverses approximations sur plusieurs propriétés
monoélectroniques: distribution de charge le long de I'axe moléculaire et perpendiculairement a
celui-ci, moment quadrupolaire et distribution de I'énergie d’attraction de coeur. On trouve des
différences avec le travail de Zemke ef al. (1), qui utilisent une plus grande base partiellement optimisée,
pour les états IT, ol les orbitales n sont trés diffuses. Les différences concernent la grandeur et la position
des extrema des courbes de potentiel, ainsi que des variations importantes des propriétés mono-
électroniques qui dépendent fortement de la distribution spatiale des orbitales.

1. Introduction

The purpose of this paper is to study various levels of approximation in the
MO LCAO framework with the example of the lowest-lying '11,, °I1,, 'I1,, *II,
states of the hydrogen molecule. Different types of wavefunctions were employed.
The energies and expectation values of one-electron operators of a single-con-
figuration type wavefunction &y are compared with those of a double-con-
figuration wavefunction of Cl type Yo =AqPyr+ BoPyr and of extended
Hartree-Fock type Yope = Aopc Pur + Bope Pur- In the latter wavefunction the
cocfficients 4 and B are also subjected to a self-consistent iteration procedure.
The configurations are built up of the proper linear combinations of determinants
for each of the four IT states. @y and @y are chosen in such a way that they
allow for proper dissociation of the molecular states in excited atomic states.
The molecular orbitals used are the lowest ¢, ,, ,, 7, functions given as linear
combinations of a small number of equivalent atomic orbitals on each center.

The present approach was used by Zemke et al. [1] to study primarily the
117, state, but also some of the characteristic features of the *II,, 11T, and *II, states.
The present work is a generalization and complement of their study. Therefore
we shall, in the next sections, be brief about the details of the method and emphasize
only the differences arising in the present work. Most of the general features of
the method are equal; the emphasis of the work of Zemke et al. [1] was on a
limited exponent optimization of a medium-sized atomic basis set. Our objective
was a full exponent optimization of a smaller basis set. Zemke et al. used the follow-
ing atomic basis on each center {1s, 2s, 3s, 2po, 3do, 2pn, 3pn, 3dr, 4dn, 4 fn}.
They optimized the exponents for these 2 x 10 basis functions for the 11, state
at R =2 Bohr by minimizing the total energy of this state with a double-con-
figuration function ¥qpe of extended Hartree-Fock type. They used these ex-
ponents for the study of all the other distances from R=1.5 to 10 Bohr of the
potential energy curve Eopc of 'II, and also the *IT,, 'II, and °II, states. We
employed a basis {1s, 25, 2pa, 2pm, 3drn} on each nucleus. We optimized the ex-
ponents of the orbitals at a number of distances covering the potential curves
from R =1.5 to 10 Bohr. The optimization was performed separately for each of
the four states. Details of the optimization can be found elsewhere [2]. For
comparison, we have also calculated the properties of the *I1,, 'II, and *II, states
with the optimal exponents of the 11T, states at the same distance.

We find the potential curves characterized properly in magnitude and location
of minima and maxima for calculations based on optimized exponents. With
comparative calculations with a single-state exponent set, here of the 'II, state,
for all four states we find larger inaccuracies in the magnitude than in the location
of the minima. The location of the maxima with a small basis set is a difficult
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problem. One-electron properties are more uniform for all four states when
calculated with a single-state exponent set instead of separate optimization. The
'11, state exponent set leads to considerable inaccuracies for the 7, states where
diffuse = orbitals are involved. Details of Sections 3 and 4 lead us to the conclusion
that exponent optimization of the dominant orbitals is necessary in small basis
sets.

2. The Method
We use the Hamiltonian of the hydrogen molecule in the form consisting

o . 1 1 .
of kinetic energy T and nuclear attraction — — of each electron, electronic
a b

. 1 .1
repulsion — and nuclear repulsion X

Fi2
1 1
H=H, +H,+ —— + — 2.1)
Tia R
with H, =T, — 11 i=1,2.
Pai Fpi

The approximate wavefunction is of double-configuration form
Y=Ad, + B, 2.2)
where @, and @, are orthonormal. The total energy of the system is

1
Eppar = TR {A*H,+ B*Hy+2ABH,;)} (2.3)

with H,=<{® |H|®,)
Hy={®,|H|®,)
H,p =<9 |H|®,>.
To obtain a minimal energy with respect to 4 and B, we have to solve

H,—E Hy

oy HB_E‘ =0. 24)

We shall use a normalized wavefunction in the following.

Each configuration &, consists of two determinants built up by a sigma
MO ¢, and a pi MO =;,

o, (D) (1)] —

e 25{ Q7 )| +

(2.5)

o;(1) m:(1)
7;(2) ni(z)‘} )

The minus sign refers to the singlet, the plus sign to the triplet state and the bar
to B spin. The MO set g,,0,,n,, 7, is assumed as orthonormal. With these

2%
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wavefunctions, H,, Hy and H 5 can be reduced to

H,=H, +H, +J, . tK; .,
Hy=H, +H,+J, . +K, .. (2.6)
HAB = Jo'laznlnz i Ko'mznlnz .

For convenience, we have dropped the nuclear repulsion.
H,, and H, are the usual core integrals and J and K the Coulomb and ex-
change integrals

Jorm = (0'10'1|n17f1),
Kaun = (o7, |7f1 61)>
Jorormims = (0102 | Ti7,),
Ko io3mimy = (04 7'52|7'51 0,)-

If we subject the energy (2.3) to variation with respect to the MO’s o; and =;
(i=1, 2) preserving the orthonormality, we obtain the following set of equations

A*H, + T, £K, ) 0,()+ ABU,,., £ K, 1)) 6,(1) = 4,,0,(1)
BZ(H2+ r £ Kp) 02(1) + AB(Uyr, £ Ko op) 01 (1) = 44,0,(1) @7
A*(H, + K, )7 (2)+ABWU, ., 2 K, 1) 12(2) = A, 71 (2)
B*H,+J,,+K,)n2(2)+ AB(,,,, £ K,,;) 11(D) = e, 72(2) -

These are the extended Hartree-Fock equations in double-configuration form
for this particular two-electron case [3]. The A’s are the Lagrange multipliers.
The other multipliers vanish for symmetry reasons: As mentioned in the intro-
duction, we used only one MO of each of the symmetry types o, g, m,, 7,. The
J’s and K’s are the usual Coulomb and exchange operators

to= (@ |- 5 @) a0
i
Kooi)= (m0)| | 0,0)m(0)
s = (@) || @) 0.0
12
Kewoad = (10 |- ) ma(t) et

After expansion of the MO’s in atomic orbitals Egs. (2.7) can be written in matrix
form

F,C;=8,C;A; i=0,,0,7,7T; (2.8
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where the double-configuration self-consistent field Hamiltonians are defined as

F, =A*H+Q,)+ABW,,
F,,=B>H,+Q,)+ABW,,
F,, = A*H+Q,)+ABW,
F,,=B*H,+Q,)+ABW,,.

(2.9)

The repulsion energy matrix Q and coupling energy matrix W are obtained from
contraction of supermatrix Q. For example

Qo’l = Djtlnl Qﬂﬂtlﬂlﬂl ’

W, =(P,,,C.) S8, C ) +(5,,C,)(P,,,C,)
WIth Pﬂ'm‘z = DIHTEZQT!ﬂ!zlez ?

— i i j—=
Dij_CiCj L] =01,0, T, N3,

Qijkl :JijkziKijkz-

The J’s and K’s are the usual electronic repulsion integrals over atomic orbitals
i,j, k, . The formulas for the other cases are similar.

Solutions of the coupled Eqgs. (2.8) yield the double-configuration self-con-
sistent field MO’s which allow us to calculate the energy and expection values
of one-electron operators. The Hartree-Fock case is contained in the formalism
with A =0 or B=0. In the following the energies H, and Hy are denoted by Eyr
and Eyp.. The configuration interaction energy E is then obtained by solving
Eq. (2.4). The coupling energy H ,5, now denoted by E,,,;ine» has to be calculated
separately. The final energy Egpc referring to the MO’s which are solutions of
the coupled Egs. (2.8) and (2.9) is obtained after self-consistent iteration of both
linear AO coefficients C; and configuration coefficient A. We employed an iteration
procedure which alternately improves C; and 4 in single steps.

In the following sections, we have chosen @y consisting of MO’s ¢, and =,
for IT, states and ¢, and =, for I, states, whereas @y consists of ¢, and =, for II,
states and ¢, and =, for II, states. The MO’ are those belonging to lowest
eigenvalue for each symmetry type of operator F of (2.9). The atomic basis set
consists of symmetry adapted orbitals: three 0 AO’s {1s, 2s, 2ps} and two = AO’s
{2pm, 3dn} on each center with equal exponents for equivalent orbitals.

3. Potential Energy Curves

The results of this paper are based on extensive exponent optimization of
the symmetry adapted atomic basis set. The final exponents are collected in Table 1.
The exponents of the 1s, 2s, 2ps and 3dr orbitals were optimized at R =1.5,2,3,
6 and 10 Bohr. For the other distances the exponents were interpolated linearly.
The 2pn-orbital exponents were optimized at all distances listed. All exponents
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Fig. 1. ODC mixing coefficients 4 and differences 4 A between 'II, based and optimal values

were determined by minimizing Eqpc, except 'II, and *I1, at R=1.5 to 3 Bohr.
These exponents were optimized so to minimize Eye rather than Eqpc. The reasons
for doing so were purely economical. This part of the work involving integrals
with such small exponents was finished only recently with a different program,
whereas the other part was done two years ago. Our calculations indicate that
we can safely assume that configuration interaction is so small for the range
R=1.5 to 3 Bohr that not much improvement would result from optimizing
Egpe- In principle the values for the 2pn-exponents would slightly increase.

Fig. 1 presents, on the ODC level, optimal coefficients 4 and differences
AA=A"— A between mixing coefficients A’ calculated with II, exponents and
optimal coefficients 4. The results are also that the ODC approximation tries
to mix the two configurations more than the CI approximation.

From the potential energy curves in the following tables this will become
clearer. If @y is the dominant configuration, 4 is decreased when going from CI
to ODC, otherwise it is increased. For the optimized exponents (Table 1) the
configurations of the IT_ states are more strongly mixed than for the non-optimized
exponents. The situation is reversed for the 311, state.

Tables 2-5 contain the self-consistent field energies Eyp and Eyg. of the two
configurations @y and @y, their configuration interaction energy E; and the
optimum double-configuration energy Eqpc and the coupling energy E.,upiing
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Table 2. Potential energy curves and coupling energy for I, state of H,

R Eyr Egr Eqr Eonc Eguoine Fxgupiine
1.5 —0.69571 0.02498 —0.69612 —~0.69700 —0.00082 —0.00260
1.8 —0.71136 -0.12102 —0.71198 —0.71301 —0.00125 —0.00330
1.95 —~0.71249 —0.17596 —0.71326 —0.71433 —0.00155 -0.00369
2.0 —0.71223 —~0.19217 —0.71307 —0.71415 —0.00167 ~0.00383
2.2 —0.70900 —0.24834 —0.71014 —0.71122 —0.00228 —0.00445
3.0 —0.68040 —0.38819 —0.68378 —0.68447 —0.00668 —0.00809
4.0 ~0.64228 —0.46440 —0.65188 —0.65202 —0.01826 ~0.01868
50 —0.61376 ~0.49673 —0.63353 —0.63404 —0.03455 —0.03583
6.0 —0.59494 —0.52087 —0.62097 —0.62701 —0.04133 —0.05193
7.0 —0.58240 —0.52254 -0.62109 ~0.62475 —0.05557 —0.06220
8.0 -0.57227 —0.52465 —0.62189 —~0.62428 -0.06571 —0.07010

10.0 —0.55476 ~0.52626 —0.62379 —0.62448 —0.08084 —0.08212

Table 3. Potential energy curves and coupling energies for *I7, state of H,

R Eyr Eup Eq Eonc Egovies Egupine
1.5 —0.71334 0.03694 —0.71383 —0.71426 -—0.00098 —0.00185
1.8 —~0.73012 —0.09805 —0.73091 —0.73135 —0.00158 —0.00246
1.95 —0.73169 —0.15015 —0.73268 —0.73309 —0.00198 —0.00281
2.0 —0.73156 —0.16590 —0.73263 —0.73303 —0.00213 —0.00294
22 —0.72869 —0.22122 —0.73009 —0.73044 -0.00280 —0.00351
3.0 —0.70020 —0.37222 —0.70345 —0.70361 —0.00644 —0.00680
4.0 ~—0.66119 —0.36585 —0.66829 ~0.66847 ~0.01371 —0.01421
5.0 —0.63179 —0.50908 —0.64506 —0.64554 -0.02417 —0.02547
6.0 —0.61186 —0.53408 —0.63082 —0.63388 —-0.03171 —0.03781
7.0 —0.59760 —0.53971 —0.62643 —0.62886 —0.04327 —0.04825
8.0 —0.58691 —0.54326 —0.62475 —0.62685 —0.05168 —0.05587

10.0 —0.57046 —0.54536 —0.62470 —0.62564 —0.06430 —0.06613

Table 4. Potential energy curves and coupling energies for 7, state of H,

R Ene s Eq Eopc Eguptine Egpeine
1.5 —0.63663 —0.05059 —0.63671 —0.63671 —0.00017 —0.00017
1.8 —0.65459 —0.18078 —0.65472 —0.65472 —0.00025 —0.00026
2.0 —0.65693 —0.25975 —0.65711 —0.65711 —0.00034 —0.00035
2.2 —0.65513 —0.31647 —0.65536 —0.65536 —0.00046 —0.00047
3.0 —0.63198 —0.46743 —0.63267 —0.63270 —0.00138 —0.00145
4.0 —0.56695 —0.55136 —0.60480 —0.60619 —0.04431 —0.04693
5.0 —0.54497 —0.56928 —0.61136 —0.61802 —0.05158 —0.06290
6.0 —0.54146 —0.57560 —0.61391 —0.62340 —0.05012 —0.06579
7.0 —-0.53013 —0.57316 —0.61912 —0.62520 —0.06061 —0.07081
8.0 —0.52685 —0.56765 ~0.62155 —0.62563 —0.06869 —0.07562

10.0 —0.52654 —0.55400 —0.62451 —0.62551 —0.08200 —0.08377
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Table 5. Potential energy curves and coupling energies for *I1, state of H,

R Eyr Eqr Eq Eopc Eguetine EgpRine
1.5 —0.63693 —0.05220 —0.63698 ~0.63703 —0.00010 —0.00019
1.8 —0.65497 —0.19146 —0.65505 —-0.65511 —0.00015 —0.00028
20 —0.65739 —0.26142 —0.65750 —0.65757 —0.00020 —0.00036
2.2 —0.65569 —0.31790 —0.65583 —0.65592 —0.00028 —0.00046
3.0 —0.63303 —0.45860 —0.63346 —0.63366 —0.00085 —0.00127
4.0 —0.60143 —0.54674 —0.60558 —0.60634 —0.00775 —-0.00931
5.0 —0.56160 —0.58410 —0.60960 —0.61253 —0.03331 —0.03903
6.0 —0.55573 —0.58957 —0.61560 —0.61962 —0.03629 —0.04386
7.0 —0.54934 —0.58753 —0.61942 ~0.62247 —0.04384 —0.04975
8.0 —0.54745 —0.58224 —0.62140 —0.62362 —0.05120 —0.05553
100 —0.54629 —0.56944 —0.62366 ~0.62444 —0.06375 —0.06528

for all four IT states with the optimal exponents for each state. With respect to
the hierarchy of models HF, CI and ODC we observe that most of the corre-
lation energy is in the step from HF to CI and little further energy decrease
results from going from CI to ODC level. The difference between CI and ODC
energies increases with increasing internuclear distance in the range R=1.5 to
10 Bohr, reaching a maximum at R =6 Bohr. From calculations not presented
here, we can also learn that exponent optimization always improves Eqpc but
the corresponding Eyr might be higher than the Ey of a non-optimized exponent
set. This is particularly true when configuration interaction becomes important.
For *II, and *II, this is true for R = 5 Bohr, for *II, for R =4 Bohr. The Hartree-
Fock curves are in general far too high with the ODC optimized basis set and
so there is little meaning in considering the difference between Egpe and Eyp
in our calculations as a good description of the correlation energy. With the
(sometimes only little) improvement of Eqp We sacrifice information about Egg.
With a larger basis set, even with limited exponent optimization, there seems
to be more flexibility in linear combinations to represent both self-consistent field
states HF and HF' satisfactorily. This is particularly true for II, states, but also
for the *II, state [4].

The complete set of potential curves for the four IT states is given in Figs. 2-5.
The easiest way to describe them is to say that the Eqpc curves of 1T, and 311,
states calculated with the optimal exponents of Table 1, match almost exactly
the results of Browne [5]. For the 'II, states Browne [6] lists only values at 8
and 10 Bohr. Our values agree with those, too.

For 11, our results are inferior to those of Zemke et al. [1] for R <6 Bohr.
For larger distances our results are better because their fixed 2prm exponent
could not converge to the proper limit. The difference between the two curves
Eope and Egpe is, however, not considerable. Both curves show a minimum at
about 1.95 Bohr quite in agreement with the extensive calculation by Kolos and
Wolniewicz [7]. At larger distances both Eqpc and Efjp have a hump not visible
in the figure. From the virial theorem ratio of potential and kinetic energy this
maximum is located in our calculation at about 7.8 Bohr, whereas the more
precise calculation by Kolos and Wolniewicz [7] locates it at 9 Bohr.



[1] 103 JO oA (P90F yim SIPIdULOD JSOUE Y1 98N8 UMOYS Jou) 2907 ‘sjusuodxe
"IT, UM 9aInd 2907 ‘9amo wonemgyuoos-squop rewndo jussaid 2005 ‘soaInd o0 J-e0Iirey Fg puw Hy Try 10 91215 "[[; Jo $9AIND A810UL [enUA0g ‘¢ Sig

[1]79Y Jo 245 (paysep) %0y ‘9a1no uoneIn§yuoo-o[qnop eurido jueseid 2905 soa1mnd 320 J-0enuel] My pue MMy (T4 jo ayels "7y, Jo saand £Gxoue fenusiod ¢ 314

K. Jug, P. G. Lykos, and A. D. McLean:

26

€814 781
(yog) ¥ (yog)y
2 gy eme
e S S £ ——tpso- 9 —F—Fr £ _ 200
4220~ 4 0L0-
4040~ -189°0-
489'0- -99°0-
4990~ -$9°0-
1990~ 290"
#Nw.o- do90-
(0941IDH) (984440H)
3 3
AOw.O- lggo-
-8G°0- lAwn.Ou
dago- “vG0-
E:m _mzu ]l_
V $SO- 260



5 [1] 19 Jo 2aimo 2C7 ‘syusuodxs "1y
A 9AIND 207 <Txy 10 9AIND UonEINSYU0s-o|qnop [ewndo juessrd 2907 ‘soaInd Joo-vonie My pue My gy jo arels rp, Jo soamo AFrouo renusjod ¢ Sig

[1] 399 Jo oa1no 2907 ‘syuouodxs "If;
A oI 2997 Try 10 2Amd voneINSHUO-s[gnop [ewndo Jussaid 2907 ‘soaInd }oo-eenIry MMy pue g (T jo are1s Uy, jo soarno A31ouo [enuoiod b Sid

§ 81 AIE
1yog) o
8 L mA ) _m.mw o (dyog) oy
0- L 9 v i
r T T ﬁ _ g g _ 890-
H99°0- Jogo-
—
=)
- qv90- dpoo-
g
< .
& ~29°0- ~290-
=
=)
2 .
i ese" {ogo-
j#2]
a .
2 —8g°0- Jdago-
Q
]
#wo? logo-
(99.4IDH) (9944JDH)
3 3
1b60- -~¥S0-
.Tm.o- Jago-
-105°0- 40G0-
lgyo- 8t'0-



28 K. Jug, P. G. Lykos, and A. D. McLean:

.85
80

T
{Hortree)
75
.70
.65

.60

.55

012

AT 0.10

(Hartree)

008
006
0.04]
002
0

-002

-004

s

6
R (Bohr}

Fig. 6. ODC kinetic energies T and differences A T between *1II, based and optimal values

The Eqpc potential curve for 311, is slightly lower than Zemke et al.’s denoted
by Egpc- We prefered not to include it in the figure because it is almost in-
distinguishable from ours. Both curves have a minimum at R =1.95 Bohr and no
maximum. The potential curve Egpc for this state calculated with the exponents
of 111, is quite inferior to both Eqpc and Egp but locates the minimum correctly.
However, here the virial theorem is not of much help since the internal distribution
of kinetic and potential energy is way off the correct ratio for this case.

Most interesting are the II states, where exponent optimization comes to
full fruition at small internuclear distances. The fully optimized curve Egpc is
lower than Zemke’s curve Ejpc, which in turn is lower than the curve Egpc,
based on the 1T, optimization. All three curves show minima at about R = 2.00 Bohr
which, for the 3Hg state, is in agreement with the more extensive calculation of
Wright and Davidson [8]. For 3II, there is a maximum between 4 and 5 Bohr
which is correctly located on all three levels of approximation Eopc, Eopc and
E}pe. Quite interestingly, the larger basis set of Zemke et al. is more favorable
than the present optimized set at some distances where strong configuration
interaction occurs. We attribute this to the flexibility of linear optimization which
can decrease the energy of both Hartree-Fock curves Eyg and Eyyg., whereas non-
linear parameter optimization seems to favor one curve at the costs of the other.
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Fig. 7. ODC electronic energies E,; and differences 4 E,, between 11, based and optimal values

For larger distances R =6 Bohr our asymptotic set gains advantage over the
unoptimized set by Zemke et al.

Similar consquences hold for the 'II, state, where we locate the maximum
at about 3.85 Bobhr, whereas Zemke et al. located theirs tentatively at about
4.2 Bohr. Since they do not list values referring to the virial theorem, their choice
is somewhat arbitrary. The precise location of the maximum has to await further
investigation. The features of these curves are well-represented also in the less
optimized Egpc curves although the location of the maxima undergoes a shift
to smaller R values. )

In the asymptotic limit of the ODC level all four states dissociate to the same
atomic states. But 'IJ, and *II, approach each other more closely and so do *II,
and 'I7,. This is expressed in the energies at 10 Bohr.

Figs. 6—8 contain the ODC energy breakdown and virial theorem for all
four IT states with the optimal exponents and differences to 'II, state based
values of these quantities. Further calculations show an increase of kinetic energy
when going from the HF level to the ODC levels for 'IT,,3IT, and 3Hg states.
For 'II, there is a surprising decrease of kinetic energy for R>7 Bohr. The
increase of kinetic energies is certainly more than compensated by a decrease
of potential energy. As far as a comparison of the two levels of exponent optimi-
zation is concerned, we can say that exponent optimization increases the kinetic
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energy of the *II, state, but decreases it for internuclear distances smaller than
4 Bohr, for the II, states. One might conclude that the wavefunction tries to
contract upon exponent optimization for the *II, state and expand for the I,
states. Details can be found in the next section.

4. Properties of One-Electron Operators

The density distribution perpendicular to the molecular axis can be analyzed
by studying the expectation values of g2, the distribution along this axis by
studying zZ. '

Perpendicular to the molecular axis, measured by g2, there is a slight contrac-
tion in the 71, states, whereas the IT, states show a contraction for smaller distances
and an expansion for larger distances when going from the HF level to the ODC
level. Comparison of the four states shows again that *IT, is more contracted
than '71, whereas the II, are far more expanded (Fig. 9). The distributions of all
four states come very close to each other when calculated with the exponents
of 'II,.

Comparing the levels of approximation we find that when going from HF
to ODC, {zZ?) increases for the I, states and decreases for the 1, states. Simply
speaking, the ODC functions on each atom for the I1, states try to expand to
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gain energy, whereas they try to contract for the II; states. This fact can be at-
tributed to the different nodal character of the Pyg admixture for II, and II,
states. Comparing the extensions of IT, states with II, states calculated with optimal
exponents we can say that the II, states are more diffuse than the II, states and
311, is more contracted than the 'IJ, state. It is no surprise to find that with the
11T, optimized exponents the other three try to approach the extensions of {z2)»
of 'II,. For *[I,{z?) increases, whereas for the II, states it decreases (Fig. 10).
Again we observe that the asymptotic limit shows at 10 Bohr where the ODC
values of (z7) for I, and *II, on one hand and *II, and *II, on the other hand
are very close. This trend can be observed also for the other one-electron properties.
Quantities {@2> and {z2) allow us to calculate the quadrupole moment
{3zZ—r?%) with respect to an atomic origin. The calculations show that the II,
states are more expanded perpendicular to the direction of the molecular axis for
small internuclear distances, and in the direction of the molecular axis for large
internuclear distances. The 11, states show a distribution which is always more
expanded in the direction of the molecular axis than perpendicular to it.

. . . 1N\ . .
The major portion of nuclear attraction energy ( — ) is due to attraction
ra
{sin*@/r,> perpendicular to the molecular axis than to attraction along the
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direction of the axis. The ratio {sin®68/r,>/{1/r,> is very similar for all four states,
being about 0.6. For comparison, in a spherical distribution this ratio would
be 0.666. The expectation values for all four states are coming closer together
if they are calculated with the 'IT, optimized exponents.

Tables 6—9 contain the eigenvalues of the double-configuration self-consistent
field Hamiltonian F of (2.9). For the Hartree-Fock level, these are the orbital
energies of the two MO’s of &, and @Pyg calculated separately with B=0 or
A =0. The ordering of the levels is 4, <4, <4, <A1, except for the II, states

at 10 Bohr where 4, <4, . These levels should approach —0.38 for the ¢ MO’s
and —0.003 for the 7 MO’s. There is no indication for these limits at 10 Bohr.
The reason is that the electronic interaction is still very strong, i.e. in the order
of 0.1 Hartrees; the kinetic energy has already approached the proper limits very
closely. The only other remarkable feature is the positive orbital eigenvalue of
the MO =, of II, at 2.2 Bohr with the optimal exponents, which disappears for
a 'IT, exponent calculation. The ODC values are the Lagrange multipliers. For
small distances, the two multipliers referring to orbitals of configuration ®yg
are close to their corresponding SCF values, whereas the other two have no
resemblance to the SCF values. The more mixing occurs between the two con-
figurations @y and Py the more the Lagrange multipliers decrease for the
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Table 6. Eigenvalues of 1], state of H,

R a, o, m, n,
1.5 —1.02222 —0.43665 —0.11454 —0.01860 HF
—1.02359 —0.00290 —0.11699 —0.00227 ODC
1.8 —0.93406 —0.47430 —0.11230 —0.02505
—0.93560 —0.00392 —0.11537 —0.00292
1.95 —0.89591 —0.48713 —0.11120 —0.02600
—0.89750 —0.00455 —0.11461 —0.00330
2.0 —0.88398 —0.49048 —0.11083 —0.02600
—0.88558 —0.00478 —0.11436 —0.00343
22 —0.83939 —0.49993 —0.10942 —0.02490
—0.84099 —0.00585 —0.11346 —0.00404
3.0 —0.70392 —0.50736 —0.10410 —0.02209
—0.70391 —0.01381 -0.11093 —0.00793
4.0 —0.59252 —0.48930 —0.09766 -0.01920
—0.58291 —0.04279 —0.11158 -0.01958
5.0 —0.52220 —0.47062 —0.09069 —0.01959
—0.49221 —0.09654 —0.11480 —0.03824
6.0 —0.47983 —0.47708 —0.08403 —0.03033
—0.43009 —0.14979 —0.11701 —0.05573
7.0 —0.45774 —0.44925 —0.07762 —0.02637
—0.38778 —0.19182 —0.11590 ~—0.06898
8.0 —0.44396 —0.43427 —0.07024 —0.02614
—0.36112 —0.22038 —0.11478 —0.07891
10.0 —0.42671 —0.41799 —0.05438 —0.02641
—0.33111 —0.25657 —0.11336 —0.09315
Table 7. Eigenvalues of 311, state of H,
R [ g, T, 7,
1.5 —0.98849 —0.42247 —0.13276 —0.00680 HF
—0.98948 —0.00210 —0.13449 —0.00170 OoDC
i.8 —0.90092 —0.44642 —0.13177 —0.00230
—0.90208 —0.00300 —0.13403 —0.00229
1.95 —0.86394 —0.45370 -0.13113 —0.00035
—0.86515 —0.00355 —0.13369 —0.00263
2.0 —0.85239 —0.45592 —0.13089 —0.00009
—0.85362 —0.00376 —0.13355 —0.00275
22 —0.80907 —0.46241 —0.12989 0.00182
—0.8103t —0.00474 —0.13301 —0.00333
3.0 —0.68155 —0.48000 —0.12467 —0.00593
—0.68196 —0.01147 —0.13020 —0.00677
4.0 —0.58474 —0.48564 —0.11716 —0.02151
—0.57947 -0.03099 -0.12717 —0.01487
5.0 —0.52749 —0.48025 —0.10891 —0.03264
—0.50568 —0.06952 —0.12462 —0.02828
6.0 —0.49220 —0.48287 —0.10094 —0.04386
—-0.44518 —0.12015 —0.12010 —0.04424
7.0 —0.47047 —0.46333 —0.09272 —0.04393
—0.39668 —0.16891 —0.11532 —0.05915
8.0 —0.45706 —0.45163 —0.08488 —0.04516
—0.36362 —0.20418 —0.11144 —0.07035
10.0 —0.44199 —-0.43719 —0.07034 —0.04631
—0.32668 —0.24583 —0.10678 —0.08487

3 Theoret. chim. Acta (Berl) Vol. 25
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Table 8. Eigenvalues of 1T, state of H,

R g, o, 7, 7,
1.5 —1.13635 —0.49951 —0.09414 —0.05539 HF
—-1.13629 —0.00025 —0.00018 —0.05555 ODC
1.8 —1.04359 —0.52773 —0.09376 —0.05544
—1.04344 —0.00041 —0.00028 —0.05569
2.0 —0.99060 —0.54276 —0.09332 —0.05542
—0.99034 —0.00059 --0.00039 —0.05575
22 —0.94358 —0.55509 —0.09270 —0.05541
—0.94315 —0.00086 —0.00053 —0.05584
30 -0.79876 —0.58012 —0.08994 —0.05541
—0.79615 ~0.00384 —0.00181 —0.05663
4.0 —0.59110 ~0.49236 —0.10624 —0.02197
—0.38974 ~0.25473 —0.09090 —0.05927
5.0 —0.52912 —0.46234 —0.09248 —0.02147
—0.25565 —0.35225 —~0.11903 ~0.06763
6.0 —0.49956 -0.45476 ~0.08538 —0.03004
—0.22853 —0.36530 —0.11989 —0.07187
7.0 —0.45856 —0.44506 —0.07729 —0.02483
—~0.22768 —0.36112 —0.11911 —0.07776
8.0 —0.43739 —0.43710 - 0.06940 —0.02441
—0.23749 -0.35042 -0.11738 —0.08408
10.0 —0.41827 —0.42537 —0.05428 —0.02605
—0.26029 —0.32995 —0.11452 —0.09476
Table 9. Eigenvalues of *JI state of H,
R a, o, T, 7,
1.5 ~1.13606 -~0.50099 —0.09579 —0.05567 HF
—1.13601 —0.00025 —0.00018 —0.05585 OoDC
1.8 —1.04301 ~0.52924 —0.09534 —0.05581
—1.04289 —0.00040 -0.00027 —-0.05608
2.0 —0.98993 —0.54397 —0.09495 ~-0.05586
—0.98972 —0.00055 —0.00036 —0.05621
22 —0.94258 —0.55624 —0.09425 —0.05596
—0.94225 -0.00077 ~0.00047 -~ 0.05640
3.0 —0.79718 —0.58079 —0.09138 —0.05651
—0.79535 —0.00299 -0.00142 —0.05761
4.0 —0.65900 -0.55180 —0.10159 —0.05649
-0.62118 —0.04814 —0.01577 —0.06183
5.0 —0.53888 —0.48251 ~0.10747 —0.03852
—0.23116 —0.35058 -0.10614 —0.05219
6.0 —0.50540 —047139 —0.09947 —0.04469
—0.20069 —0.36807 —0.11008 —0.05680
7.0 —0.47303 —0.46149 ~0.09184 —0.04463
—0.20288 —0.36241 —0.10997 —0.06357
8.0 —0.45573 —0.45341 —0.08415 —0.04558
—-0.21739 —0.34857 —0.10832 —0.07125
10.0 —0.43786 —0.44148 —0.06981 —0.04606
—0.24691 —0.32383 —0.10555 —0.08417




Lowest Excited IT States of H,. I 35

configuration @y and increase for the configuration @y in absolute value, so
that o, approaches ¢, and =, approaches n,. The asymptotic limits should be
—0.25 for o and —0.06125 for n. Again we observe that the eigenvalues for all
four states are close together when all are calculated with 'IT, exponents.

Tables 10—-13 contain the eigenvectors. For all four states we observe little
change in the coefficients of configuration &4 when going from the HF level
to the ODC level. The changes increase with increasing configuration interaction.
They are relatively larger for the less important AO’s 2s, 2ps and 3dr than for
the dominant 1s and 2pzn. The HF' MO’s show decreasing change for the 1s and
2p with increasing interaction, ie. they are more stabilized by configuration
interaction. There is, at all distances an important change in the coefficients of
2s, 2po and 3dn AO’s of this configuration @y.. For large distances the coefficients
of 1s and 2px should approach 1 /]/_ whereas the other coefficients should vanish.
At 10 Bohr this trend becomes apparent. At small distances the most remarkable
fact is the great difference in the coefficients of the ¢ MO’s for 'II, and *11, states
which has no counterpart in the energy. It could very well be that the way in which
the 1s, 2s, 2pc exponents for 1.5 Bohr were obtained had an influence on the
coefficients. One might conclude that the dependence of the linear coefficients
on the exponents is expressed in such a way that the coefficients can take care
of a redistribution of the charge so that there is almost no energy change when
going from 'II, to *II,. We also emphasize that we did not reoptimize after
obtaining the ﬁrst optimized set of exponents. The discrepancy between 'II,
and 3H coefficients at 1.5 Bohr disappears when results of the 7, states are based
on the 1H state exponents.

5. Conclusion

The purpose of the present paper was a characterization of the features of
the four lowest-lying II states of the hydrogen molecule. We employed a double-
configuration wavefunction and three levels of approximation, namely HF, CI
and ODC for energies and one-electron properties. We compared these properties
for two sets of exponents: one set based on optimization of the 'II, state and
taken also for all the other states and the other set based on optimization of all
four states separately.

We found that the potential curves E and Eqpc are characterized properly
with maxima and minima on the CI and ODC level, and also the HF level is
represented properly by the Eyp and Eyg. curves. The emphasis on the accuracy
of the HF level is decreased when the accuracy of the ODC level is increased.
This can be seen from a comparlson of the results for the 311, and II, states with
!I1, exponents and opt1mal exponents. The location of the maxima and minima
of the potential curves is also dependent on the exponents. We find minima for
II, and II, states properly at R =1.95 and R =2.00 with the optimal exponents.
The maxima for ‘11, at R = 7.8 Bohr, for 'IT,at R = 3.8 Bohrand *IT, at R = 4.2 Bohr
are less secured. They probably depend on the choice of the basis set.

An analysis of the one-electron properties shows uniformity for the four
states when calculated with the same set of exponents, whereas significant differ-

3*
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ences between the states begin to show when their properties are calculated for
each with its own optimal exponents.

There are problems with exponent optimization which are difficult to resolve,
in particular, the dependence of the exponents on each other and the dependence
of the linear coefficients on the exponents. We find exponent optimization necessary
when the MO’s are much more diffuse or contracted than either limit for large
or small internuclear distances so that a prediction for intermediate distances
is not possible. This happens to be the case for the I, states at the energy minimum.
From our results we conclude that it would be best to optimize the exponents
of the dominant orbitals, here 1s and 2pr, and add a larger number of further
functions which are not optimized but which allow us by linear coefficient optimi-
zation to describe the features of potential curves properly.
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